On Total Positivity of Catalan-Stieltjes Matrices

نویسندگان

  • Qiongqiong Pan
  • Jiang Zeng
چکیده

Recently Chen-Liang-Wang (Linear Algebra Appl. 471 (2015) 383–393) present some sufficient conditions for the total positivity of Catalan-Stieltjes matrices. Our aim is to provide a combinatorial interpretation of their sufficient conditions. More precisely, for any Catalan-Stieltjes matrix A we construct a digraph with a weight, which is positive under their sufficient conditions, such that every minor of A is equal to the sum of the weights of families of nonintersecting paths of the digraph. We have also an analogous result for the minors of a Hankel matrix associated to the first column of a Catalan-Stieltjes matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Total Positivity of Delannoy-Like Triangles

where e, h are both nonnegative and dn,k = 0 unless n ≥ k ≥ 0. We call D(e, h) the Delannoy-like triangle. The entries dn,k count lattice paths from (0, 0) to (n − k, k) using the steps (0, 1), (1, 0) and (1, 1) with assigned weights 1, e, and h. Some wellknown combinatorial triangles are such matrices, including the Pascal triangle D(1, 0), the Fibonacci triangle D(0, 1), and the Delannoy tria...

متن کامل

Power Series over the Group Ring of a Free Group and Applications to Novikov-shubin Invariants

We study power series over the group ring CF of a free group F . We prove that the von Neumann trace maps rational power series over CF to algebraic power series. Using the Riemann-Stieltjes formula, we deduce the rationality and positivity of Novikov-Shubin invariants of matrices over CF .

متن کامل

Some notes on L-projections on Fourier-Stieltjes algebras

In this paper, we investigate the relation between L-projections and conditional expectations on subalgebras of the Fourier Stieltjes algebra B(G), and we will show that compactness of G plays an important role in this relation.

متن کامل

Combinatorics of Generalized Motzkin Numbers

The generalized Motzkin numbers are common generalizations of the Motzkin numbers and the Catalan numbers. We investigate their combinatorial properties, including the combinatorial interpretation, the recurrence relation, the binomial transform, the Hankel transform, the log-convexity, the continued fraction of the generating function, and the total positivity of the corresponding Hankel matrix.

متن کامل

Note on Total Positivity for a Class of Recursive Matrices

In this note, we study the total positivity of a class of infinite recursive matrices that depend on three infinite sets of independent variables and on an integer parameter. We give a simple algebraic proof and provide a few examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016